56 research outputs found

    Building Space Thermal Control Model Responding to Sharp Changes in Outdoor Temperature

    Get PDF
    As computing and data-driven technologies have improved, the precision of the building thermal control models has been gradually improved, but the use of energy resources to operate them has been also increased. It is imperative to investigate the optimized point of energy use and human comfort for their thermal control strategies. The aim of this research is to find an energy-efficient thermal control model to maintain the constancy of thermal comfort and suppress the increase of energy use in association with precise environmental controls. Based on a cooling and heating air supply model in a simplified building model, a comprehensive energy use pattern is confirmed by adding an adaptive control model that allows indoor thermal comfort to be maintained at a setting level. The adaptive control model utilizing the artificial neural network and the adjustment process of initial settings is proposed to examine its performance in controlling the amount of thermal supply air and its temperature. For the clear comparison between a baseline model and a proposed model, the statistical indices of each thermal dissatisfaction value and the weekly heating energy use are utilized. The results of this research show that the thermal dissatisfaction fluctuation is alleviated by about 22.0~41.0% and the energy efficiency is improved by about 5.1%, respectively. The results provide the effectiveness of the proposed model which can improve both the energy use and thermal comfort in a building space. This advantage can help old thermal systems to improve their usability without replacing any major components

    Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor

    Full text link
    Levitated optomechanics has great potentials in precision measurements, thermodynamics, macroscopic quantum mechanics and quantum sensing. Here we synthesize and optically levitate silica nanodumbbells in high vacuum. With a linearly polarized laser, we observe the torsional vibration of an optically levitated nanodumbbell in vacuum. The linearly-polarized optical tweezer provides a restoring torque to confine the orientation of the nanodumbbell, in analog to the torsion wire which provides restoring torque for suspended lead spheres in the Cavendish torsion balance. Our calculation shows its torque detection sensitivity can exceed that of the current state-of-the-art torsion balance by several orders. The levitated nanodumbbell torsion balance provides rare opportunities to observe the Casimir torque and probe the quantum nature of gravity as proposed recently. With a circularly-polarized laser, we drive a 170-nm-diameter nanodumbbell to rotate beyond 1~GHz, which is the fastest nanomechanical rotor realized to date. Our calculations show that smaller silica nanodumbbells can sustain rotation frequency beyond 10 GHz. Such ultrafast rotation may be used to study material properties and probe vacuum friction
    corecore